

Monolithic 4K ECRAM-Based Analog AI Chip for Energy-Efficient On-Chip Tranining

Hyunjeong Kwak*

Al & Neuromorphic Device Lab Department of Materials Science and Engineering, POSTECH

*Email: hjkwak9524@postech.ac.kr

Al & Neuromorphic Device Lab

Date: Friday, July 04, Time: 08:50:00 AM

Major Contributions

- I. <u>The first fully-integrated ECRAM-based analog AI accelerator chip</u>, achieving energy efficiency (6.17 TOPS/W) and low power consumption (11.08 mW)
- II. A BEOL-compatible fabrication process
- III. <u>The largest selector-free in-situ neural network training demonstration</u>, leveraging superior device characteristics

I. Introduction

System Hierarchy for Analog Accelerator Chip

Resistive Cross-point array RPU Tile w/ Peripheral Circuits Analog AI Accelerator Data interface $I_j = \sum V_i g_{ij}$ Power Clock Bus or Network-on-chip 10 Timing Bias Data interface

*RPU = Resistive processing unit, NLF = Non-linear function, NoC = Network-on-chip

To realize analog acceleration at system level, resistive cross-point array are organized into hierarchical structures from device, to array, to full AI chip

Al & Neuromorphic Device Lab

[1] Gokmen, T. et al., Frontiers in Neuroscience 2016 [2] Kim, S., et al., MWSCAS 2017

II. Electrochemical RAM

Electrochemical Random-Access Memory for High-Performance Accelerators

- Separation of read and write operation
 - Program (Write) : Control the conductivity of the channel by injecting/removing ions into the channel by applying a current/electric field to the gate
 - <u>Read</u>: Conductivity is measured by applying a voltage between drain and source and reading the current

Al & Neuromorphic Device Lab

III-1. Monolithic 4K ECRAM-Based Analog AI Chip

Fabrication of Monolithic 4K ECRAM Analog AI Chip

H. Kwak et al., (Manuscript in preparation)

Device, chip, and BEOL-compatible fabrication flow integrating ECRAMs

on the 250nm-tech peripheral circuit chip

Al & Neuromorphic Device Lab

III-1. Monolithic 4K ECRAM-Based Analog AI Chip

Monolithic 4K ECRAM Analog AI Chip

H. Kwak et al., (Manuscript in preparation)

- ECRAM array size: 64x64
- Chip size: 4.65 x 4.65 mm²
- Unit cell area: 20x20 um²
- Peripheral with SAR ADC 10 bits,
 16 channels analog front-end,
 FPGA signal buffer

System-level demonstration by integrating ECRAM devices on foundry-built accelerator chip

III-1. Monolithic 4K ECRAM-Based Analog AI Chip

Switching Performance of ECRAM Devices

H. Kwak et al., (Manuscript in preparation)

Al & Neuromorphic Device Lab

7

III-2. *in-situ* Training Demonstration

Hardware in-situ Training Demonstration in a 21×21 Array H. Kwak et al., (Manuscript in preparation)

Half-Bias Scheme

Pivotal Aspects for Array Operation

Half-bias selectivity

Vector-matrix multiplication

8

III-2. *in-situ* Training Demonstration

Hardware in-situ Training Demonstration in a 21×21 Array H. Kwak et al., (Manuscript in preparation)

III-2. *in-situ* Training Demonstration

Expected Energy Efficiency of Our ECRAM Analog AI Chip

H. Kwak et al., (Manuscript in preparation)

	Nature '22 [13]	ISSCC '22 [14]	Nat. Elec. '23 [15]	This work
NVM	RRAM	nor-Flash	PCM	ECRAM
Chip area (mm²)	159	190	144	30.25
CMOS Technology	130 nm	40 nm	14 nm	250 nm
Output precision	6b	8b	8b	10b
TOps/W	16	5.2	2.48	6.17
Core size	256×256	1024×1024	256×256	64×64
TOps/Core (/K)	0.25	0.005	0.039	1.543
Power (mW)	47.125	3190	6490	11.08

[11] J. Hung, Nat. Electron. (2021). [12] W. Khwa, ISSCC (2022). [13] W. Wan, ISSCC (2022). [14] L. Fick, ISSCC (2022). [15] M. Gallo, Nat. Electron. (2023).

Acknowledgement

Al & Neuromorphic Device Lab

Dr. Oki Gunawan & Chaeyoun Kim

- Prof. Hyunsang Hwang at POSTECH
- Prof. Donghwa Lee at POSTECH
- Prof. Jiyong Woo at KNU
- Prof. Byungha Shin at KAIST
- Dr. Oki Gunawan at IBM
- Prof. Hyung-Min Lee at Korea Univ.

Thank you for your attention

Al & Neuromorphic Device Lab